PLGA Microspheres Incorporated Gelatin Scaffold: Microspheres Modulate Scaffold Properties
نویسندگان
چکیده
Freeze drying is one of the popular methods of fabrication for poly(lactide-co-glycolide) (PLGA) microspheres incorporated polymer scaffolds. However, the consequence of microspheres incorporation on physical and biological properties of scaffold has not been studied yet. In this study, attempt has been made to characterize the effect of PLGA microsphere incorporation on the physical properties of freeze-dried gelatin scaffold and its influence on cytocompatibility. Scaffolds loaded with varying amount of PLGA microspheres (10%, 1%, 0.1% w/w) were subjected to microarchitecture analysis, swelling, porosity, mechanical properties, biodegradation, cell adhesion, and cell proliferation studies. Results revealed that an increase in percentage loading of microspheres reduced the pore size and uniformity of the pore structure. Moreover, loading of PLGA microspheres up to 1% w/w significantly increased porosity, swelling, and mechanical properties of the scaffold but variations were not proportional for 10% w/w loading. Results also showed that PLGA microspheres have no significant effect on cell adhesion but influenced the growth kinetics.
منابع مشابه
Differentiation of Mouse Stem Cells into Neural Cells on PLGA Microspheres Scaffold
The cellular therapy and nerve tissue engineering will probably become a major therapeutic strategy for promoting axonal growth through injured area in central nervous system and peripheral nervous system in the coming years. The stem cell carrier scaffolds in nerve tissue engineering resulted in strong survival of cells and suitable differentiation into n...
متن کاملIntroduction of gelatin microspheres into an injectable calcium phosphate cement.
For tissue engineered bone constructs, calcium phosphate cement (CPC) has a high potential as scaffold material because of its biocompatibility and osteoconductivity. However, in vivo resorption and tissue ingrowth is slow. To address these issues, microspheres can be incorporated into the cement, which will create macroporosity after in situ degradation. The goal of this study was to investiga...
متن کاملPorous hydroxyapatite scaffold with three-dimensional localized drug delivery system using biodegradable microspheres.
In this study, ionic immobilization of dexamethasone (DEX)-loaded poly(lactic-co-glycolic acid) (PLGA) microspheres was performed on the hydroxyapatite (HAp) scaffold surfaces. It was hypothesized that in vivo bone regeneration could be enhanced with HAp scaffolds containing DEX-loaded PLGA microspheres compared to the use of HAp scaffolds alone. In vitro drug release from the encapsulated micr...
متن کاملA novel hydrophilic poly(lactide-co-glycolide)/lecithin hybrid microspheres sintered scaffold for bone repair.
Novel 3-D porous scaffolds made of sintered poly(lacide-co-glycolide) (PLGA)/lecithin hybrid microspheres (PLGA/Lec-SMS) were developed and investigated. The addition of lecithin in PLGA bulk successfully managed the desired hydrophilic modification without sacrificing bulk properties. The outcomes were verified with infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and ...
متن کاملPreparation, Characterization and Evaluation of Drug Release Properties of Simvastatin-loaded PLGA Microspheres
Microspheres formulated from poly (D,L-lactic-co-glycolide) (PLGA), a biodegradable polymer, have been extensively evaluated as a drug delivery system. In this study, the preparation, characterization and drug release properties of the PLGA microspheres were evaluated. Simvastatin (SIM)-loaded PLGA microspheres were prepared by oil-in-water emulsion/solvent evaporation method. The microspheres ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2009 شماره
صفحات -
تاریخ انتشار 2009